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LETTER TO THE EDITOR 

A new Holstein-Primakoff realisation of sp(4, R) 

R A Tello-Llanos 
Centro d e  Fisica-IVIC, Apdo 21827, Caracas 1020-A, Venezuela 

Received 19 July 1988 

Abstract. A new Holstein-Primakoff type realisation of the non-compact Lie algebra 
sp(4, R) is given in a completely explicit, analytic and closed form. The construction is 
related to the representations where the Casimir invariants of the subalgebras sp,,,(2, R) 
are diagonal, rather than the invariants of the maximal compact subalgebra 4 2 ) .  

After the work of Mlodinow and Papanicolaou (1980, 1981) the importance of Holstein- 
Primakoff ( 1940) type realisations of the irreducible representations of the non-compact 
symplectic Lie algebras sp(2d, R) is generally accepted, especially in applications to 
many-particle quantum problems. Extensive work has been done to obtain such 
realisations (Moshinsky 1985, Deenen and Quesne 1985). The common approach was 
to look for basis of state vectors associated with the irreps in the chain of groups 
Sp(2d, R) 2 U(d). However, the known results are not given in a completely analytic 
form. Numerical computation must be performed at some stage. In the present letter 
I would like to draw attention to another choice of the basis, namely those associated 
with the chain Sp(24 R) 2 [Sp(2, R)Isd .  In particular, a completely analytic Holstein- 
Primakoff realisation for the case d = 2 will be given. It will be related to the representa- 
tions where the Casimir invariants J:,2 of the subalgebras spl,,(2, R) are diagonal. 
Then, the change to another basis could be obtained, if necessary, by means of a 
unitary transformation. 

As is well known (Castafios e? a1 1985), a set of creation vir and annihilation tir 
operators ( i  = 1,2; r = 1,2 , .  . . , n )  of a system of 2n Bose oscillators can be used to 
give the sp(4, R) generators in the form 

n 

C i j  = C q i r 5 j r + f n s i j  
r = l  

n n 

B t =  C V i r T j r .  
r = l  

Bij = C t i r t j r  
r = l  

The irreps of sp(4, R) can be parametrised by the pairs A l  +in, h z + i n ] ,  where the 
integers h l  , h2 satisfy the inequalities OS A l  d h 2 .  The quantities hi +in are the eigen- 
values of the weight operators Cii ( i  = 1,2) in the lowest weight state vector I L W ) ,  which 
is defined by 

C2JLW) = 0 (2a) 

B b l ~ w )  = 0. (2b) 
All discrete series of irreducible representations of sp(4, W) in a separable Hilbert 

space were found and classified by Evans (1967). It was done using basis of state 
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vectors parametrised by the eigenvalues of J:, ,  and C,  , , C,, . Each irrep was identified 
by the pair (9, s), where q =  (h2+h l+n) /2  and s =(h2-h1)/2.  For all of them, it can 
be written 

where 

J f =  [Cf, -;(B:B,, + B,,B:)1/4 i = l , 2  

and (14, s : j ,  , m, , j , ,  m2)} is a complete basis of orthonormalised state vectors. 
There are four different series in the classification given by Evans. But it will be 

enough to limit the discussion to one of them, which seems to be the most useful in 
physical applications. The other series could be treated in a similar fashion. Thereafter, 
I will deal only with the series of irreps given by the values 

s=o,;,1,; ) . . .  
q > s + ;  i f s  = O ,  4 
q > s + l  i f s  = 1, +, . . . . 

In this case, the state vectors are parametrised within a given irrep by the values 
j l = ( q + l + S ) / 2 ,  m ,=j ,+v , ,  j 2 = ( q + I - S ) / 2 ,  m2=j2+v2,  where v,, v 2 , Z = 0 ,  1 ,  
2, , . . , and S = s, s - 1, . . . , - S .  The present notation is that of Inaba et a1 (1982) where, 
excluding some ‘singular’ cases, the matrix elements of the ten generators of sp(4, R) 
are listed. The ‘singular’ cases arise when q = s + 1, s + 2. To be brief I exclude these 
cases too and assume q # s+ 1 ,  s +2. 

The range of parameters v,, v2,  1 and S shows that a Holstein-Primakoff realisation 
of sp(4, R) can be looked for in the representation space of a Lie algebra w(3)Osu(2), 
where w(3) is the Weyl algebra of three bosons oscillators. Then, let us start with the 
assumption of the one-to-one correspondence (for given values of q and s) 

I q, s : j ,  = t(  q + I + s ) ,  m, = j ,  + v i ,  j 2  = j( q + I - S), m2 = j ,  + v2) - 1 v1 , v 2 ,  I )  8 Is, S )  ( 5 )  

where {I.,, v2, I ) }  is an orthogonal basis for w(3), parametrised by the eigenvalues of 
the occupation number operators of three independent boson oscillators N, = b:b,, 
a = 1,2,3,  and {Is, S)} is a standard basis of su(2), whose generators will be denoted 
by S, , S2, S3. The lowest state vector corresponds to the values v, = U, = 1 = 0, S = -s. 

The analysis of the matrix elements of the sp(4,R) generators, through the assumed 
one-to-one correspondence, allows us to state that the following operators give the 
Holstein-Primakoff realisation for the mentioned series of irreps ( q  = s + 1 ,  s + 2 
excluded): 

C , ,=q+2N,+N3+S3  (6) 

C22=q+2N2+ N3-S3 (7) 

+ S+(g + NI + N3+ S3)’’,(q + N2+ N3 - S3 - 1)’/*G+ b:b,S-G’ (8) 

B:, = 2b:( q + N, + N~ + s,) (9) 

Bl, = 2bl(  + Nz + N3 - S3)’’, (10) 

Cl2= b l b 2 ( q  + NI + N3+ S3)’l2F+ b:b3(q + N2+ N3 - S3 - 1) ‘ l 2 F ’  
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Z3T2 = b:(q + N1 + N3+ S3)'/'(q + N2+ N3 - S3) ' /2F+ b:b:b,F' 

+ b:S+(q + Nl + N3 + S3)1'2G + b:S-(q+ N2+ N3 - S3)1/2G' ( 1 1 )  

where S,=S,*iS2,  F = F ( N 3 , S 3 ) ,  F'=F(N3-l,S3), G = G ( N 3 , S 3 )  and G'= 
G( N 3 ,  S3 - l ) ,  with 

(12) 
( q + s + N3) ( q - s + N3 - 1 (2q + N3 - 2) 

F (  N 3 ,  S3)  = (( q + N3 + S3) (  q + N3 + s3 - 1 ) ( q  + N3 - S3Nq + N3 - s3 - 1)  

) WN3 S3)  = (( q + N3 + S3)(  q + N3 + s3 - 1 ) ( q  + N3 - s3 - 1 ) ( q  + N3 - s3 - 2) 
( q  - s3 - 2) ( 4  + s3 - 1) 

(13 )  

The remaining operators follow by Hermitian conjugation. 
Now, it can be directly verified that the operators (6)-( 13) satisfy the sp(4, W )  

commutation relations. This realisation has the explicit, analytic and closed form 
which becomes specially useful in physical applications. A non-trivial example is the 
so-called 1/ N expansion of rotational invariant two-particle Hamiltonians. This was 
developed by Mlodinow and Papanicolaou (1981) for the case of s-wave states (total 
angular momentum L = 0). Now, the extension to arbitrary values L of total angular 
momentum can be given in the basis of appropriate selection of the irreps of sp(4, W )  
associated with given values of L. As was stated by Mlodinow and Papanicolaou 
(1981), there is a definite relation between the total angular momentum and the Casimir 
invariants of sp(4, W). With the choice n = 3 in ( l a )  and ( l b )  it can be written 

L2 = 2 s ( s +  1 )  +2q(q - 3 ) + 9 / 2  (14) 

where L2 = L:+ Li+ L: and 

A systematic choice of irreps with given eigenvalues L(L+ 1 )  of L2 can be obtained 
making s = L/2 and q = s ++ = ( L +  3)/2. The '1/ N' expansion can be obtained express- 
ing the Hamiltonian as an explicit function of the sp(4,W) generators and then 
expanding it in powers of a small parameter x = q - ' l 2 =  [2/(L+3)]'/'. It is clear that 
the above series of irreps is enough for this purpose. Further discussion of such 
expansions could exceed the scope of the present letter and will be given elsewhere. 
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